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TECHNICAL NOTE 3815

ON SLENDER-BODY THEORY AND THE ARFA RULE
AT TRANSONIC SPEEDSL

By Kelth C. Harder and E. B. Klunker
SUMMARY

The basic ideas of the slender-body approximation have been spplied
to the nonlinear transonic-flow equation for the veloclity potential in
order to obtain some of the essential features of slender-body theory
at transonic speeds. The results of the investigation are presented
from a unified point of view which demonstrates the similerity of slender-
body solutions in the various Mach number ranges. The primery difference
between the results in the different flow regimes 1s represented by a cer-
tain function which is dependent upon the body area distribution and the
stream Mach number. The transonic area rule and some conditions con~
cerning its valldity follow from the analysis.

INTRODUCTION

Slender-body theory originated with Munk's peper (ref. 1) in 192k
in which the forces on slender alrships were calculated for low-speed
flight. In 1938 Tsien (ref. 2) pointed out that Munk's airship theory
also applied to the flow past inclined pointed bodies &t supersonic
speeds. The subject gained new importance in 1946 with the appearance
of Jones's paper (ref. 3) in which it was shown that the basic ideas of
the slender-body approximation could be used to calculate the forces on
slender lifting wings at both subsonic and supersonic speeds provided
that proper account was taken of trailling-vortex sheets. Since Jones's
paper, the subject has recelved wide treatment. In an important paper
in 1949, Ward (ref. L) developed a general unifying theory for the flow
past smooth slender polnted bodies at supersonic speeds. This theory
contalins as speclal cages the lifting planar wings of Jones and the slen-
der nonlifting bodies treated by Von Kelrmdn (ref. 5). The corresponding
problem st subsonic speeds has been examined by Adams and Sears (ref. 6)
who also extended the slender-body concepts to shapes which are "not so
glender." ILighthill (ref. 7) has given a method for calculating the

1Supersedes recently declassified NACA Research Memorandum L54LA29s,
by Keith C. Harder and E. B. Klunker, 195L.
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flow past bodies with discontinuities in slope. Keune (ref. 8) has

developed solutions for.slender wings with thickness, and various lifting -
configurations have been treated by Heaslet, Spreiter, Lomex, Ribner, and
others (refs. 9 to 13).

The slender-body theory presented in references 2 to 13 has been
based upon the linearized equation for the velocity potential. In the
present paper, the basic idees of the slender-body spproximetion are
applied to the nonlinear transonic equation for the velocity potential
in order to gailn some insight into the esséntial features of slender-
body theory at transonic speeds. The sttempt has been made to present
the results from a unified point of view which demonstrates the simi-
larity of the slender-body solutions in:the various Mach number ranges.

The authors wish to acknowledge the valusble suggestions of
Dr. Adolf Busemann of the Langley ILeboratory during the preparation of
this paper.

SLENDER-BODY APPROXTMATION

Slender-body theory deals with that class of shapes whose length
is large compared with any leteral dimension. For such shapes at both "
subsonlic and supersonic speeds, the flow in plenes normel to the stream
direction can be approximated by solutions of Laplece's equation. The
Juetification is that for very slender wings or bodies the variation of
the geometrical properties in the stream direction is smsll and, conse-
guently, the rate of change of the longitudinal component of the veloecity
in the stream direction is also smell. The verious slender-body solu-
tione have all been developed on the basis of the linearized potential
equation. However, & similar development can be made on the basis of
the nonlinear trensonlc equetion.

b

The simplest differentiel equation for the disturbance potential &
which is generally valid at trensonic speéds (ref. 14, for example) is

E. - M2 - (y l)M2¢x]¢n * Oyy + 0yp = O (1)

where X, ¥y, and 2z are rectangular coordinates, M 1s the stream
Mach number, end ¥ is the ratio of specific heats at constant pressure
and constant volume. With 1 +the characteristic length and b +the
characteristic width (such as the largest lateral dimension of the con-
figuration), the nondimensionel coordinates x3, ¥i1, and 27 defined

by x=1x7, ¥y =1by;, and z = bz and the nondimensionsl potential &7
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2
defined by & = %r ¢l(xl,yl,zl) are all of the order of 1 in the viecinity
of the configuration. In this coordinate system, equation (1) becomes

b2l _ .2 2(13)2 - '
(l) {% M (y + 1)M 7 ¢lx1 @1Xlx1 + ¢1y1¥1.+ ¢12121 0 (2)

For sufficiently small values of the width parameter b/Z, the terms
involving derivatives in the stream direction can be neglected to obtain
the result that the flow epproximately satisfies Laplace's equation

in the crossflow plane. Equation (3) represents the slender~body approx-—
imetion to equation (1).

The surface boundery condition is

3% _ dn dn
( %) 3

on 4x

where n 1s the outward normel to the configuration in the crossflow
plane. TFor slender configurations the surface boundary condition can
be integrated (ref. 4, for example) to give

JF =] dv = 8'(x) (&)
v

Ja}

where v 1s any contour enclosing the shape, S(x) 1is the cross-
sectional ares distribution of the shape, and the prime denotes differ-
entliation with respect to the indicated argument.

In the slender-body approximation, the potential satisfying equa-
tion (1) and the surface boundary condition is represented in the neigh-
borhood of the configuration as a solution of equation (3) plus a func-

*tion of integration G(x). Thus for r = Vy2 + 22 < p, say, where p > b,

o (x,7,2) = §(v,2;x) + G(x) (rS p) (5)
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where ¢ is a solution of the Laplace eguation in the crossflow plane
with x appearlng as a parameter introduced by the shape of the cross
section at x. The function ¢, being independent of the stream Mach
number, can be evaluated for an incompressible flow past the shape under
consideration. The function G(x) is determined from considerations
involving the complete equation for tramsonic flow (eq. (1)) and, conse-
quently, is dependent upon the stream Mach number and upon the shape of
the configuration. Although the analytic expression for G(x) at tran-
sonlc speeds is not known, it will be shown that the only geometrical
property of the configuration which influences this function is the
crosg~sectlional area distribution - just ag at subsonic and supersonic
speeds. This property of a(x) - is established by comparing the slender-
body solution with the solution for the flow past a body of revolution.
As a preliminary to these considerations it is necessary to examine the
expression for the velocity potential in more detail.

The flow past a slender configuration is glven by the solution of

equation (3) satisfying the boundary conditions of the problem and can
be expressed in nondimensional terms by T

Q(x:y;Z) = —% 177’ Z g(T')]
_ _blf_a_];t_vfc (%I% -0 %E)(log = 4 log )dc + g(—z->] (6)

where o 1s the contour bounding the cross-sectional srea of the con-
figuration and/or the trailing—vortex system in the y,z plane, m is

the unit outward normal, @(y,z;x) = —f c& E.E), a(x) = g(z)

\J(y -17) 24 (z =~ {;)2 and r = Vye + 22 as shown in the following
sketch' .

> ¥
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Since r is independent of the surface normal, equation (6) can be
written as

o(x,y,2) = %E'(%)log T+ L (% -9 g—m)log -rﬁ do + g(%—i] (rsp) (7

where use has been made of equation (4) and where S(x) = besG%). The

veriation of ¢ with the azimuth engle ©6 1is contained entirely in the
line integral. Two of the basic assumptlons used in the derivation of
equation (7) are that both the perturbation veloclties and the perturbation-
velocity gradients in the stream direction are small. In order to satisfy

these assumptions s"(X) and s"{¥) must be bounded. These conditions
1 i

imply that equation (7) applies only to shapes that are smooth and free
from discontinuities. Moreover, an additional restriction on the asymmetry
of the shepe is sometimes required (ref. 4); nemely, the radius of curva-
ture of the configuretion in the crossflow plane must be of the order of

b vwhere the shape 1s convex outward.

For a body of revolution at zero incidence the contour integral in
equation (7) vanishes and

i) =l (Bpess e8] S0 ©

where the subscript o 18 used to denote values for a body of revolution.
Since a body of revolution 1s completely defined in terms of the cross-
sectional area distribution, this is the only geometric parameter which

enters into go(-}-;-) Thus, go(’T‘) is of the form go(%;so) where the

dependence upon the body shepe is contained in s8,. Further considera-
tion of the region of validity of the slender~body soclution is necessary

in order to show the corresponding dependence for g(%).

Exemination of equation (7) shows that the variation of the poten-
tial with the szimuth angle becomes venishingly small for r 2 ry, since

the logarithm in the contour integral is of the order b/r for %~<< 1.

The magnitude of the terms neglected in equation (1) are now compared
with those retained, in order to show that ry lies within the region

where the slender-body solution 1s a valid spproximastion. The ratio of
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the neglected terms [? - M2 - (7 + l)M2¢;1¢xx to any of the remaining

terms for r > Ty is of the order

B ool 1) o]« B
O(log %) + 0(1—)‘[} =<

where O{ ) denotes order of, O(1l) denotes nonsingular terms, and the

functions g'(%) and g" %

ratio it can.be seen that, for a glven Mach number and degree of approxi-
mation €, the region of validity of the slender-body solution (r € p),
measured in terms of body widths p/b, can be made as large as desired

by suitably restricting b/Z. Consequently, for % <<1l, r;<p and
the flow field external to r; are nearly axisymmetric so that

o(x,y,2z) = bze[ ( ):Log g( )] (rl <r< p) (9)

In addition, for a glven degree of spproximation, larger values of the
width parameter b/z are permitted at tranfonic speeds then in the other
speed ranges since the quantity 1 - M2 ig much larger at subsonic and
supersonic speeds than at transonic speeds.

are considered to be reguler. From this

In the region r > ry, the flow sbout & slender configuration is

nesrly axisymmetric and ¢ must be identical to some ®o in this region.
If ¢, 1is the potentiael of the associated axisymmetric flow which glves

rise to the same velocities as ¢ for ir > Ty, then, from equations (8)
end (9), 8o =8 &and gy = g. Thus, g 1s determined as the funce
tion go. Since the only geometrical property affecting g 18 8q»

and since 8 = 8g, the only geometricel property influencing g is &.
Thus, g(%) is of the form g(z, ) where the dependence upon the shape

of the configuration is contained entirely within s(%).

In the preceding dlscussion the region of validity of the slender-
body approximation to 2J, was tacitxy'assﬁmed to be et least as large

ki
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as that for ¢. This condition is certainly true since the singular
terms in the two solutions are the same.

A complete discussion of the validity of the slender-body approxi-
mation at transonic speeds would require the analytic expression for

g(%). In the absence of this information, such considerations are

admittedly somewhat speculative. Even so, it is of interest to explore
the nature of the approximation since some elementary considerations
suggest that the slender-body solution will provide a reasonsble approx-
imation in regions where it might be expected to be poor - in the neigh-
borhood of weak shock waves. Because of the nature of the slender-body
solution, the flow is represented only in a small neighborhood of the
configuration, and the shocks are represented as surfaces of discontinuity
normal to the stream direction. Moreover, for slender configurations at
transonic speeds, only near normal shock waves are to be expected.

In the slender-body aspproximation the term EL -M2 - (y + 1)M2<Ls;;|¢»xx

is required to be small compared with any of the other terms in the tran-
sonic differential equation for all vaelues of r less than p. If this
condition is to be satisfied in the neighborhood of wesk shock waves, the
quantities

g"(—’%)E. - M2 - (7 + 1M, (10s)
and
s"(%)% L (% -9 -%)1% 8 a0 (101b)

must be bounded there. Since the disturbance velocities are bounded for
shapes which satisfy the assumptions of slender-body theory, the quanti-

ties in expressions (10) will be bounded at shock waves if g"G%) is

bounded. The transonic differentisl equation admits of solutlons having
veloclity discontinuities which are compatlible with the transonic approx-
imation to the shock-wave relations (see appendix). Since the develop-

ment in the appendix does not require that @y, be singular, it seems

reasonable to suppose that ¢xx and, hence, g"(%) are bounded in the

vicinity of shock waves. In addition, the coefficient of g"(%) in
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expression (10a) has a mean value of O for the admissible normal shock
waves and the contour integral in expression (10b) venishes at values
of x/1 for which the configuration is axisjmmetric.

The slender-body solutions in the various Mach number ranges are
similer in that they are all represented by equation (7) although the

function g(%) differs for the various Mach number renges. Werd

(ref. 4) has determined the function g(%) for supersonic fléws and
Adams and Seers (ref. 6) have obtained a corresponding expression for
subsonic flows. Although an anslytic expression for this function at
transonlic speeds is not known, it has been eéstablished that the only

geometric. property of the bhody influenciﬁg fgCg) is the ares distribu-~
tion. Moreover, the transonic similarit§ rule for bodies of revolution
(ref. 1% or 15) shows that SG%) can be expressed in the form

X S'g%) 2 5 2 X
g(-i-> = - log (')’ + l)M (—_L-> + f(—z-,K)
where the similarity parameter is

- M2
K = 1 -M

(y + l)M?(%)E

AFRCDYNAMIC FORCES

Since the slender-body solutions are sll represented by equation (7),
formal expressions for the aserodynemic forées can be determined which are
valid throughout the Mach nunber renge. Consequently, meny of the essen-
tial features of slender-body theory at transonic speeds can be obtained
without resorting to detailed calculations.

Lift

The most slgnificant difference betweén the élender-body solutions
at subsonic, transonic, and supersonic speeds is that the function g(%)
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differs in these various speed ranges. However, the term in the pressure
arising from the function g(%) makes only & uniform contribution to

the pressure at any value of x and, therefore, cennot affect the 1ift
distribution or the 1ift. Thus, within the slender-body approximation,
the 11ft distribution depends only upon the function ¢ and, conse-~
quently, is independent of the stream Mach number. Several investigators
(for example, Heaslet, Lomax, and Spreiter; ref. 9) have previously noted
that the linearized slender-body theory gave consistent resulis, even at
a Mach number of 1, for planar systems.

According to slender-body theory, the 1ift distributlon can be
obtained completely from solutions of Laplace's equation in the cross-
flow plane. Since this equation is linear, the 1ift 1s proportional to
the angle of attack even at transonic speeds. Ward has obtalned an
especially simple form for the drag due to 1lift in which

where o 15 the angle of attack measured from zero 1lift and L is the
1ift.

Drag

By computing the momentum change of the fluld passing through a
cylinder enclosing the body, the drag D 1is determined as

p_ D _ (22 fl ' X gq°
D - (z)aos(ﬁ)g(ﬁ)dg”’j;,‘Pand" (11)

where the body extends from &€ =0 to &€ =1, o' denotes the contour
of the body at the stern which in the cese of wings or wing-body combina-
tions includes the trailing-vortex sheet, q 1s the stream dynamic pres-
sure, and Dy is the base drag. Equation (11) is valid throughout the

Mach number range provided the appropriate forms of the function g(%)
are employed. The line integral i1s zero for nonlifting configurations
i1f the body is closed or if the body ends in a cylindrical section whose

elements asre parasllel to the stream. The effect of Mach number (excluding
the variastion of base drag with Mach number) is contained in the term

involving g(if.).
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When the subsonic form of gG%) is used in equation (ll), the

correct result is obtained that the dreg of nonlifting configurations
is zero. By using the supersonic form of g(%), the drag varles with

Mech number as [é'(li]alogﬁﬁ2 - l). For pointed bodles, or for bodies
which end in & cylindrical sectlon, the supersonic slender-body theory
indicates that the drag is independent of Mach number. For bodies which
do not satisfy these conditions, the superscnic result indicates that
the drag approaches infinity as the Mach number approaches 1. These
results from linear theory cemnot be considered satisfactory at tran-
sonlc speeds since they give a discontinulty in the drag as the Mach
number is Increassed through 1; whereas experimental data show that the
drag starts to increase rapidly at a subsonic Mach number and varies
smoothly through 1. However, the few known solutions of the nonlinear
transonic-flow equation are In good agreement with experiment in this
regard. It would be expected, therefore, that the drag rise of slender
shapes would be correctly spproximsted by equation (11) once the tran-

gonle form of g(%) 1s known.

Transonic Ares Rule

The body shape enters into the function gG%) only ag a function

of the cross-sectional ares distribution throughout the Mach number range.
This property of the slender-body solutions leads to an importent result

even though the anelytic expression for. g(% is not known at transonic

speeds. FExamination of equation (11) shows that the body cross-sectional
shape enters into the slender-body drag expression only through the con-
tour integral evalusted at the stern of the configuration. Tor a fixed
base contour, then, the drag of nonlifting configurations depends only
on the axial distribution. of the body cross-sectional ares and is inde-~
pendent of the cross-sectional shape. Thus, within the slender-body
spproximetion, the drag of s nonlifting configuration is the same as
that of the associated body of revolution having the same streamwise
distribution of cross-sectional area provided the base contour is fixed.
It is in this sense that an equivalent body of revolution is associated
with a wing-body combinetion. This result, often referred to as the
area rule, 1ls especially significant at transonic speeds where larger
values of the width parameter b/l are permitted than in other speed

ranges.

The property of the dependence of the drag upon the distribution of
cross-sectional area has previously been obteined by Ward (ref. 4) and
Grahem (ref. 16) for supersonic flow and has been observed experimentally
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by Whitcomb (ref. 17, for example) at transonic speeds. The importance
of this result was first noted by Whitcomb who demonstreted that the

area rule could be used as a basis for the deslign of low-drag wing-body
conmbinations at transonic speeds. From the preceding development, the
transonic area rule is subject to the restrictions of slender-~body theory
with the additional condltion that the base contour be fixed.

Langley Aeronautical ILaboretory,
National Advisory Committee for Aeronautics,
Langley Field, Va., January 18, 195k.
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APPENDIX

ON SOLUTIONS OF THE TRANSONIC DIFFERENTTAT, EQUATION

HAVING VELOCITY DISCONTINUITIES

The ‘transonlc differential egquation for the disturbance velocity
potential (eq. (1)) can be written as

a2
__?.J-_._§_1-M2-(7+1)M2¢'j + Oy + O, =0 (A1)
2(y + 1)M2 3% R oo

From the conservation laws, the tangential velocitlies across a shock
wave are continuous and the normal velocity is discontinuous. Consider
first the possibility that &y 1s discontinuous across a surface normal
to the x~coordinate. In order for the differential eguation to admit
such solutions, the values of ¢y on each side of the discontinuity
must give rise to the same value for the first term in equation (Al).
With the subscripts 1 eand 2 dJdenoting quantities immediately upstream
and downstream, respectively, of the surface of discontinuity, this con-
dition is satisfied by :

‘% - M2 - (7 + 1)MPy | = -[ ~ M2 - (7 + 1)M2¢2x]

or

CREYa

a2 ' _
1 - M < (<:>1xf¢2x)_o

which is the first-order approximation to the normal-shock relstions.

By considering discontinuities in all three veloeclty components
(i.e., oblique shock waves), the resulting expression relating the dis-
turbance velocities on each slde of the discontinuity 1s identical to
the first-order approximetion for the entire shock polar. Thus, the
trensonlc differential equation admits of solutions having velocity dis-
continuities which are consistent with the first-order é&pproximation to
the entire shock polar. Stated another way, the transonic approximetion
to the differential equation and shock relations are consistent.
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